How does the axial ligand of cytochrome P450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation?

نویسندگان

  • Sam P de Visser
  • Laleh Tahsini
  • Wonwoo Nam
چکیده

The catalytic activity of high-valent iron-oxo active species of heme enzymes is known to be dependent on the nature of the axial ligand trans to the iron-oxo group. In a similar fashion, experimental studies on iron-oxo porphyrin biomimetic systems have shown a significant axial ligand effect on ethylbenzene hydroxylation, with an axial acetonitrile ligand leading to phenyl hydroxylation products and an axial chloride anion giving predominantly benzyl hydroxylation products. To elucidate the fundamental factors that distinguish this regioselectivity reversal in iron-oxo porphyrin catalysis, we have performed a series of density functional theory calculations on the hydroxylation of ethylbenzene by [Fe(IV)=O(Por(+.))L] (Por = porphyrin; L = NCCH(3) or Cl(-)), which affords 1-phenylethanol and p-ethylphenol products. The calculations confirm the experimentally determined product distributions. Furthermore, a detailed analysis of the electronic differences between the two oxidants shows that their reversed regioselectivity is a result of differences in orbital interactions between the axial ligand and iron-oxo porphyrin system. In particular, three high-lying orbitals (pi*(xz), pi*(yz) and a(2u)), which are singly occupied in the reactant complex, are stabilised with an anionic ligand such as Cl(-), which leads to enhanced HOMO-LUMO energy gaps. As a consequence, reactions leading to cationic intermediates through the two-electron reduction of the metal centre are disfavoured. The aliphatic hydroxylation mechanism, in contrast, is a radical process in which only one electron is transferred in the rate-determining transition state, which means that the effect of the axial ligand on this mechanism is much smaller.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An analysis of the regioselectivity of aromatic hydroxylation and N-oxygenation by cytochrome P450 enzymes.

Quinoline was used to probe the steric and electronic contributions to rates of aromatic oxidation of nitrogen-containing, multiring substrates by cytochrome P450 (P450) enzymes. The regioselectivity of the P450 oxidation of quinoline was determined experimentally by identifying and measuring the ratios of metabolites. The laboratory results were compared with those obtained computationally by ...

متن کامل

Enhancing the efficiency and regioselectivity of P450 oxidation catalysts by unnatural amino acid mutagenesis.

The development of effective strategies for modulating the reactivity and selectivity of cytochrome P450 enzymes represents a key step toward expediting the use of these biocatalysts for synthetic applications. We have investigated the potential of unnatural amino acid mutagenesis to aid efforts in this direction. Four unnatural amino acids with diverse aromatic side chains were incorporated at...

متن کامل

Computational models for cytochrome P450: a predictive electronic model for aromatic oxidation and hydrogen atom abstraction.

Experimental observations suggest that electronic characteristics play a role in the rates of substrate oxidation for cytochrome P450 enzymes. For example, the tendency for oxidation of a certain functional group generally follows the relative stability of the radicals that are formed (e.g., N-dealkylation > O-dealkylation > 2 degrees carbon oxidation > 1 degree carbon oxidation). In addition, ...

متن کامل

Regioselectivity of aliphatic versus aromatic hydroxylation by a nonheme iron(II)-superoxo complex.

Many enzymes in nature utilize molecular oxygen on an iron center for the catalysis of substrate hydroxylation. In recent years, great progress has been made in understanding the function and properties of iron(IV)-oxo complexes; however, little is known about the reactivity of iron(II)-superoxo intermediates in substrate activation. It has been proposed recently that iron(II)-superoxo intermed...

متن کامل

Effect of porphyrin ligands on the regioselective dehydrogenation versus epoxidation of olefins by oxoiron(IV) mimics of cytochrome P450.

The cytochromes P450 are versatile enzymes involved in various catalytic oxidation reactions, such as hydroxylation, epoxidation and dehydrogenation. In this work, we present combined experimental and theoretical studies on the change of regioselectivity in cyclohexadiene oxidation (i.e., epoxidation vs dehydrogenation) by oxoiron(IV) porphyrin complexes bearing different porphyrin ligands. Our...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry

دوره 15 22  شماره 

صفحات  -

تاریخ انتشار 2009